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Abstract. The dynamics of large localized repulsive clouds is examined by means of exact non-stationary
solutions of the one-dimensional Thomas-Fermi model. The nonlinear flattening of the cloud peak, the
wave breakdown at the cloud peripheries, and the condensate velocity distributions are thus described.
Our solutions, which can contain an arbitrary amount of free parameters, show the nonlinear evolution of
an arbitrary initial wave form. A unique procedure for analyzing these solutions is presented. The difference
between our breakdown matter wave solutions and the well known Riemann shock waves is stressed.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena 04. General
relativity and gravitation – 03.65.Ge Solutions of wave equations: bound states – 02.70.Ns Molecular
dynamics and particle methods

1 Introduction

After the discovery [1–3] of Bose-Einstein conden-
sate (BEC) in trapped clouds of dilute atomic gases (al-
kali atoms), there has been a great deal of interest [4,5]
in investigating the nonlinear dynamics of matter waves.
The amplitudes and phases of the latter are usually de-
scribed by the time dependent Gross-Pitaevskii equa-
tion [6] or a nonlinear Schrödinger equation (NLSE).
Significant progress has recently been made in quasi-one
dimensional condensate confinement, such as for example
in atomic waveguides [7], cigar-shaped BEC and toroidal
traps [8,9]. The condensate is then strongly elongated (in
the z-direction). This means that the condensate remains
essentially in its ground state in a plane orthogonal to the
wave direction, and that its wave function is required to
vanish at the confining walls. Only the longitudinal ex-
citations along the z-directions are then of interest. This
approach leads to the theory for one-dimensional station-
ary nonlinear self-consistent distributions for the density
and velocity in BEC clouds including periodical cnoidal
waves with both repulsive [10] and attractive [11] nonlin-
earities, as well as observations of dark BEC solitons [12].
Contrary to previous approaches, the present paper is de-
voted to the non-stationary reshaping of one-dimensional
solitary distributions of BECs with repulsive nonlineari-
ties. In Section 2, we show how the NLSE is transformed
to a nonlinear Thomas-Fermi (TF) model which describes
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the evolution of the matter waves. Exact analytical solu-
tions of the nonlinear TF model equations are presented.
Also given are conditions under which the matter waves
break. Section 3 contains a brief summary of our work.

2 Formulation

We study phenomena that include the damping and flat-
tening of BEC distributions, the steepening of their den-
sity profiles at the periphery, and the formation of the
velocity profile. These effects are described by the time
dependent NLSE

i~∂tψ +
~2

2m
∂2
zψ − κg|ψ|2ψ = 0, (1)

where ~ is the Planck constant, the coupling constant g is
connected with the scattering length a(> 0) through [13]

g =
4π~2a

m
, (2)

and m is the atom mass. The dimensionless coefficient κ
has appeared due to integration of the wave function over
the transverse coordinates, similar to what is done in non-
linear fiber optics [14]. Its numerical value is determined
by the type of confinement [15].

We write the wavefunction in the form [16]

ψ = [n0W (t, z)]1/2 exp [iS(t, z)] , (3)

where n0 is the maximum value of the BEC density and
the dimensionless function W describes the density distri-
bution in time and space. Both W and S are real.
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Substituting (3) into (1), separating into real and
imaginary parts, and differentiating the real part with re-
spect to z, we obtain

∂tv + v∂zv +
gκn0

m
∂zW =

~2

2m2
∂z

(
1√
W
∂2
z

√
W

)
, (4)

and

∂tW + ∂z(Wv) = 0, (5)

where v(t, z) is the condensate velocity

v =
~
m
∂zS. (6)

Comparing the terms in (4) with each other, one can
see that the right-hand side in (4) can be neglected if
the length L of the elongated BEC cloud is larger than
the healing length l = (8πan0)−1/2. Usually, l ≈ 100 nm
and L ≈ 104 nm, i.e. the condition L � l is easily satis-
fied. Thus, omitting the right-hand side in (4) we obtain
the Thomas-Fermi (TF) model describing large conden-
sates [9]. Introducing the normalized variables η = z/L,
τ = t

√
κvs/L, and u = v/

√
κvs, where vs is the Bogoli-

ubov sound speed

vs =
(gn0

m

)1/2

(7)

we can rewrite the TF limit of equations (4, 5) in the
dimensionless form

∂τu+ u∂ηu+ ∂ηW = 0, (8)

and

∂τW + ∂η (Wu) = 0. (9)

The TF model equations (8, 9) describe the large-
scale dynamics of matter waves. In the following, we shall
present a broad family of exact non-stationary solutions
of the TF model. They will then be used to analyze the
self-reshaping of solitary matter waves, i.e. to describe the
flattening of the wave peak and the steepening of the den-
sity distribution at the solitary wave periphery leading to
the breakdown of the matter waves.

Exact analytical solutions of the one-dimensional TF
model are found as follows. The evolution of the spatio-
temporal distributions of the density W (τ, η) and the ve-
locity u(τ, η) can be obtained from equations (8, 9) by
means of the following steps:

a) We exchange the independent variables τ and η and
the function W and u, i.e. we consider the quantities W
and u as independent variables and τ and η as the new
unknown functions τ = τ(W,u) and η = η(W,u). The TF
system (8) and (9) is then transformed to

∂η

∂W
− u ∂τ

∂W
+
∂τ

∂u
= 0 (10)

and

∂η

∂u
+W

∂τ

∂W
− u∂τ

∂u
= 0. (11)

This transformation has thus, without any approxima-
tions, reduced the nonlinear TF system (8) and (9) to
a system of linear equations (10, 11).

b) We next reduce the system of two equations (10, 11)
to one equation by introducing a generating function
F (W,u), and using the hodograph transform [17]

τ = ∂F/∂W and η = uτ − ∂F/∂u. (12)

Equation (10) then reduces to an identity, whereas equa-
tion (11) yields

W
∂2F

∂W 2
+
∂F

∂W
− ∂2F

∂u2
= 0. (13)

Contrary to the traditional approach [17], it is now con-
venient to introduce the coordinates ξ and ρ instead of W
and u from

W = (1− ξ2)(1− ρ2) and u = −2ξρ, (14)

where−1 ≤ ξ ≤ 0 and−1 ≤ ρ ≤ 1. We can then transform
equation (13) for the function F (ξ, ρ) to the nice equation

∂

∂ξ

[
(1− ξ2)

∂F

∂ξ

]
=

∂

∂ρ

[
(1− ρ2)

∂F

∂ρ

]
· (15)

Equation (15), which has been derived from equa-
tions (8, 9) without any approximation, contains thus all
information about the dynamics of a BEC distribution
within the Thomas-Fermi model.

Equation (15) is a hyperbolic equation. Instead of solv-
ing it in the traditional way by means of characteristics,
we shall express the solution of (15) in terms of its orthog-
onal eigenfunctions. The advantage of this method will be
obvious below. We then use the method of separation of
variables, writing

F (ξ, ρ) = f1(ξ)f2(ρ), (16)

which leads to the equation

(1− ξ2)
∂2f1

∂ξ2
− 2ξ

∂f1

∂ξ
+ j (j + 1)f1 = 0, (17)

where j = 0, 1, 2, ..., and where the equation for f2 is ob-
tained by replacing ξ by ρ and f1 by f2. The eigenfunc-
tions of (17) are the Legendre functions of the first (Pj)
and second (Qj) kind.

The solution of equation (15) can thus be written as

F =
∞∑
j=0

Qj(ρ) [AjQj(ξ) +BjPj(ξ)]

+ Pj(ρ) [CjQj(ξ) +DjPj(ξ)] . (18)

where the unknown coefficients Aj , Bj , Cj and Dj have to
be determined from the initial conditions, describing the
BEC cloud at t = 0.

Rewriting (12) in the new coordinates ξ and ρ we have

τ =
1

2 (ρ2 − ξ2)

(
ξ
∂F

∂ξ
− ρ∂F

∂ρ

)
(19)
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and

η =
1

2(ρ2 − ξ2)

[
ρ(1− 3ξ2)

∂F

∂ξ
− ξ(1− 3ρ2)

∂F

∂ρ

]
· (20)

We have thus found an exact analytical solution of the
nonlinear Thomas-Fermi model equations (8, 9). In the
Appendix, we have presented formulas for differentiation
in (ξ, ρ) space with respect toW and u, as well as given the
expressions for the eigenfunctions Pj and Qj. To describe
the dynamics of any BEC distribution by means of (19)
and (20) we have to use the initial condition.

c) We now consider the simple case where the BEC
cloud at t = 0 is supposed to be immobile, i.e. u(0, η) = 0.
We denote W (0, η) by W0. For the functions τ(ξ, ρ)
and η(ξ, ρ) we then write τ(0, ρ) = 0 and η(0, ρ) =
η0. Using (19) and (20) we have ∂F/∂ρ|ξ=0 = 0 and
∂F/∂ξ|ξ=0 = 2ρη0. Substituting the derivatives of the
function (18) into the expressions (12) we obtain a closed
system of algebraic equations for calculating the unknown
coefficients Aj , Bj , Cj and Dj . This approach is valid for
any initial waveform that can be written as a sum of
Legendre functions. One can easily consider the dynamics
of a multitude of initial profiles.

A typical example of the nonlinear dynamics of the
matter waves that are described by such solutions will
be considered below. It is, however, first worthwhile to
mention that the standard solutions of the TF system
using parabolic and hyperbolic-secant profiles of W (0, η)
are limiting cases of the approach developed above. Thus,
the parabolic profile W0 = 1 − η2 (η2 ≤ 1) can be writ-
ten as η0 = P1(ρ), and the profile W0 = ch−2(η) relates
to η0 = Q0(ρ). These profiles, which have no free pa-
rameters, are represented by the first eigenfunctions of
equation (17).

Contrary to this, we can consider more general initial
profiles of η0(ρ) built from the harmonics Pj(ρ) and Qj(ρ)
and containing an arbitrary amount of free parameters. As
an example, we consider a simple bell-like profile contain-
ing one free parameter M (< −1), i.e.

η0 =
1− ρ2

2M
ln

1 + ρ

1− ρ + ρ. (21)

Unlike the ch−2 profile, the profile (21) has a finite width
between the points η0 = ±1, and unlike the parabolic
profile, the edges of (21) are smooth, i.e. W0|η=1 =
W0|η=−1 = 0 and (∂W0/∂η)η=1 = (∂W0/∂η)η=−1 = 0.
The parameter M determines the half-width of the distri-
bution whereas the maximum point (W = 1), the edges
[W (1) = W (−1) = 0] and the derivatives at these points
are fixed. Expressing the product 2ρη0(ρ), where η0 is
given by (21), in terms of the eigenfunctions Pj and Qj
we have

ρ

[
1− ρ2

M
ln

1 + ρ

1− ρ + 2ρ
]

= − 4
5M

Q3(ρ) +
4

5M
Q1(ρ)

+
4
3

(
1− 1

M

)
P2(ρ) +

2
3

(
1 +

1
M

)
P0(ρ), (22)

which can be substituted into the initial conditions to find
the coefficients in (18). The result is

C0 =
2
3

(
1 +

1
M

)
, B1 =

4
5M

, C1 =
2
3

(
1
M
− 1
)

and B3 =
8

15M
(23)

whereas all the other coefficients in (18) are equal to zero.
Substituting the function F in (19) and (21) we then fi-
nally obtain the expressions describing the self-reshaping
of the BEC distribution (21). Thus

τ =
1
2

(
1
M
− 1
)[

1
2

ln
1 + ξ

1− ξ +
ξ

1− ξ2

]
+

ξ

M

[
ρ ln

1 + ρ

1− ρ − 2− 2
3

ξ2

(1− ξ2)(1− ρ2)

]
(24)

and

η =
1
M

[
1− ξ2 − ρ2 − ξ2ρ2

2
ln

1 + ρ

1− ρ +
ρξ4(1 + 3ρ2)

3(1− ξ2)(1− ρ2)

]
+

ρ

1− ξ2
· (25)

One can see that the initial profile (21) is obtained
from (24) and (25) in the case ξ = 0 (i.e. t = 0).

We cannot rewrite the relations τ = τ(ξ, ρ) and
η = η(ξ, ρ), as defined by (24) and (25), in the alter-
native form ξ = ξ(τ, η) and ρ = ρ(τ, η). However, by
means of (24) and (25) one can easily deduce that the
spatio-temporal evolution of the initial profile (21) leads
to the formation of a non-stationary velocity distribu-
tion inside the BEC cloud, a damping of the peak and
a flattening of the density profile, and a steepening of
the periphery region of the profile, i.e. to wave break-
down. Determining the bend point values ξb and ηb from
∂W/∂η|τ = 0 and ∂2W/∂η2|τ = 0, and substituting these
values into (24) and (25) we find the coordinates for break-
down τb = τ(ξb, ρb) and ηb = η(ξb, ρb). When M = −1.25
we have τb = 0.52 and ηb = 0.71. The peak density and
velocity at the wave pulse maximum are W = 0.51 and
u = 0. The same quantities at the breakdown point are
Wb = 0.38 and ub = 0.59. The bell-like waveform is trans-
formed due to this self-reshaping, leading to a distribution
with a broad flattened top and steep periphery regions. We
note that (24) and (25) are only valid before breakdown.
Another result of this solitary wave reshaping is the cre-
ation of a new minimum and subsequent self-splitting of
the initially bell-like waveform.

In a similar way we can examine the nonlinear dynam-
ics of more complicated profiles where the initial waveform
η0 = η(ρ) contains more Legendre terms.

It should be stressed that by writing the solution of
TF model in terms of the eigenfunctions, we are able to
examine the formation of shock waves where the density
and velocity are not limited by a particular relation W =
W (u). Thus our waves generally differ from the Riemann
waves [17]. However, the TF model admits, of course, also
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Riemann waves as particular solutions. Considering the
equations of characteristics of equation (13) we thus find
the Riemann wave

W =
(u

2
+ C

)2

, (26)

where C is a constant. An analysis of such a Riemann
wave, that for example can be formed in a magnetized
plasma, was presented in reference [18]. That analysis can
thus be generalized by using the eigenfunctions of (17) to
consider the formation and breakdown of waves that are
different from Riemann waves.

3 Summary

To summarize, we have examined the non-stationary re-
shaping of elongated BEC clouds that are described by the
Thomas-Fermi model. A wide family of exact analytical
solutions of this model has been found for various initial
solitary matter waveforms. They are expressed in terms
of simple well known elementary functions. By introduc-
ing a curvilinear coordinate system it has been possible
to describe the spatiotemporal dynamics leading to a de-
crease and broadening of the peak of the solitary wave
as well as to a steepening of its periphery parts. These
processes, which also cause a velocity distribution in the
initially immobile cloud, lead to breakdown of the matter
waves. A method to calculate the breakdown coordinates
is presented. Our analysis can also be used to construct
other classes of nonlinear solutions, including self-splitted
waveforms and non-Riemann shocks.
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Appendix

It follows from (14) that the formulas for differentiation
in (ξ, ρ) space with respect to W and u are

∂

∂W
=

1
2(ρ2 − ξ2)

(
ξ
∂

∂ξ
− ρ ∂

∂ρ

)
and

∂

∂u
=

1
2(ρ2 − ξ2)

[
ξ (1− ρ2)

∂

∂ρ
− ρ (1− ξ2)

∂

∂ξ

]
·

Furthermore, the eigenfunctions Pj and Qj used in the
present paper are

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) =
(3ξ2 − 1)

2
,

P3(ξ) =
(5ξ3 − 3ξ)

2
,

Q0(ξ) =
1
2

ln
(

1 + ξ

1− ξ

)
, Q1(ξ) =

ξ

2
ln
(

1 + ξ

1− ξ

)
− 1,

Q2(ξ) =
(3ξ2 − 1)

4
ln
(

1 + ξ

1− ξ

)
− 3ξ

2
,

and Q3(ξ) =
(5ξ3 − 3ξ)

4
ln
(

1 + ξ

1− ξ

)
− 5ξ2

2
+

2
3
·
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